

Combining Quantitative and Qualitative Models with Active Observations for better Diagnoses of Autonomous Mobile Robots

Gerald Steinbauer and Franz Wotawa
Institute for Software Technology
Graz University of Technology

Who will here find and repair faults?

© NASA/JPL

Motivation

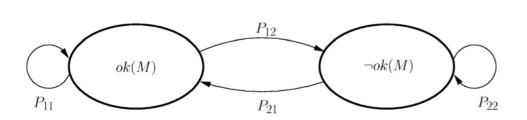
- faults at runtime in hardware and software are not totally avoidable
- automatic detection and localization desired for autonomous systems with no or limited possible intervention
- complex systems comprises parts with diverse properties
- diverse methods to perform diagnosis
 - quantitative (e.g., robot drive) or qualitative (e.g., control software)
 - output with different semantic, temporal or spatial properties
 - different views on a system
- the methods in general are consistency-based

Quantitative Modeling

modeling and monitoring

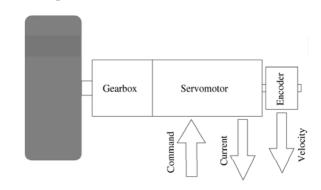
- probabilistic hybrid automata [Hofbaur 2005]
- discrete states model the operational mode (incl. faults)
- models of the dynamic of the system in each mode
- continuous states represents the dynamic world
- discrete and continuous inputs and outputs

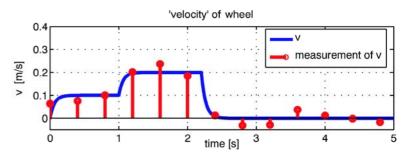
fault detection and localization

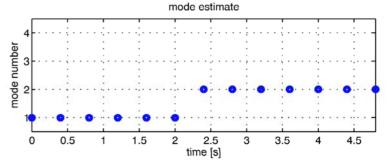

- multi-hypothesis tracking
- find the most probable operation mode (nominal or faulty)

properties

- capable to deal with continuous observations and uncertainty
- general reasoning is difficult




Quantitative Example



$$\dot{\omega} = \frac{1}{\tau}\omega + u + W \qquad (\neg ok(M))$$

$$\dot{\omega} = \frac{1}{\tau}\omega + W \qquad (ok(M))$$

Qualitative Diagnosis

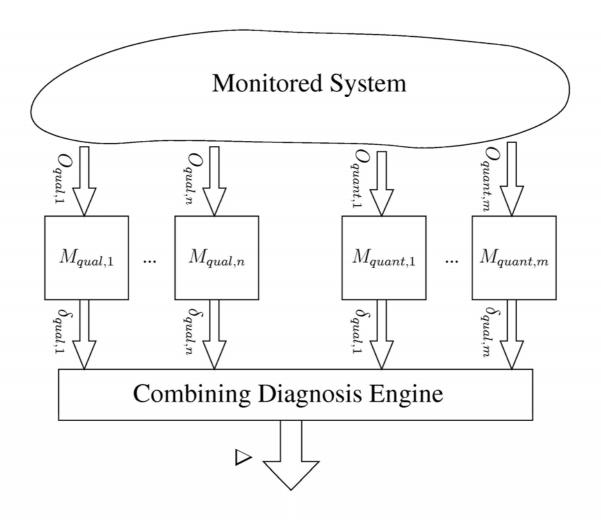
modeling and monitoring

- models and observations as logical clauses [Reiter 1987]
- Horn clauses for efficiency reasons
- component-based modeling schema

fault detection

inconsistency in the logical theory

fault localization


systematic resolve of the inconsistencies (retract assumptions)

properties

- needs discrete observations
- general reasoning, adaptation and combination is more easy

Combined Diagnosis

Open Issues (1)

- different temporal granularity
 - different frame-rates and sample points of observations
 - delays from filtering and reasoning
 - synchronization to avoid inconsistencies
- different diagnosis granularity
 - different semantic level
 - filtering to integrate quantitative observations
 - abstraction and symbol grounding
 - mixed approached needed

Open Issues (2)

spatial distribution

- diagnosis about different parts of the system
- combination to detect dependent faults
- needs meta-model
- approaches exist for the same semantic

competing diagnosis

different estimated root cause

performance

- diagnosis in general expensive
- tradeoff flexibility versus complexity
- knowledge compilation

Conclusion

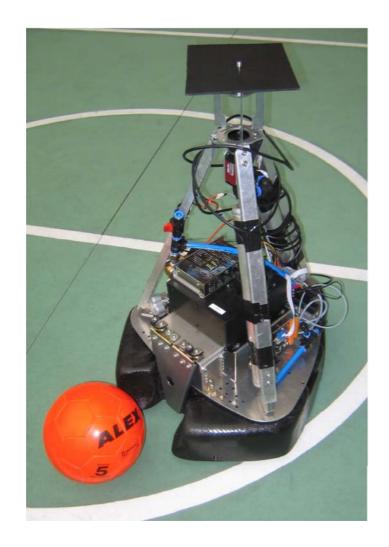
- automated detection of faults are desired for autonomous systems
- model-based reasoning solves the task
- different modeling schemas
 - qualitative
 - quantitative
- combination of different diagnoses
 - handling of different properties
 - better diagnoses due to different views
- active observations
- open issues
 - different semantic and temporal granularity

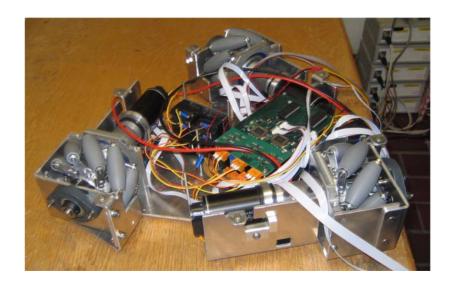
Thank you for your attention! Any questions?

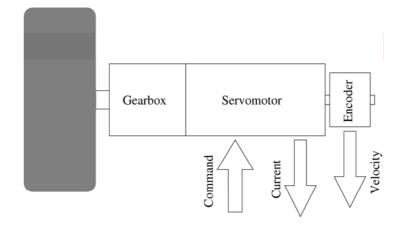
Principles of MBD

needs

- a model of the behavior of the system (qualitative or quantitative)
- actual observations of the systems
- reasoning techniques (logical inference or probabilistic state estimation)


detection


detect faults via inconsistencies


localization

- localizes the root cause by the resolving of inconsistency (qualitative models)
- localizes the root cause by multi-hypothesis tracking (quantitative models)

